Verblüfft?! - Mathematische Beweise unglaublicher Ideen
Verlag | Springer |
Auflage | 2012 |
Seiten | 186 |
Format | 15,8 x 0,9 x 23,4 cm |
Gewicht | 322 g |
Übersetzer | Manfred Stern |
ISBN-10 | 3642323189 |
ISBN-13 | 9783642323188 |
Bestell-Nr | 64232318A |
Der Autor stellt in dem Buch mathematische Aussagen vor, die paradox erscheinen und dennoch beweisbar sind. Er analysiert die Aussagen eingehend und wendet elementare Methoden der Kombinatorik, Wahrscheinlichkeitsrechnung, Statistik, Geometrie und Analysis an.
Das Buch behandelt eine Reihe von überraschenden mathematischen Aussagen, die leicht zu formulieren sind, die man kaum glaubt (weil sie paradox erscheinen), aber dennoch beweisen kann. Dabei werden elementare Methoden der Kombinatorik, Wahrscheinlichkeitsrechnung, Statistik, Geometrie und Analysis angewendet. Der Autor führt den mathematisch interessierten Lesern zahlreiche kontraintuitive Aussagen vor und analysiert diese eingehend, zum Beispiel das Geburtstagsparadoxon, Conways Chequerboard-Armee, Torricellis Trompete, nichttransitive Effekte, Verfolgungsprobleme, Parrondo-Spiele, das Buffonsche Nadelproblem und Fractran. In jedem Kapitel wird rund um das jeweilige Paradoxon ein Spannungsbogen aufgebaut, der sich im Laufe des Kapitels auf überraschende Weise lässt. Zahlreiche Abbildungen und Tabellen illustrieren die Problemstellungen und die wesentlichen Lösungsschritte. Das Buch ist so angelegt, dass es für mathematisch Interessierte mit Oberstufenkenntnissen zugänglich is t.
Inhaltsverzeichnis:
Einleitung.- 1 Drei Tennis-Paradoxa.- 2 Der Aufwärtsroller.- 3 Das Geburtstagsparadoxon.- 4 Drehen eines Tisches.- 5 Derangements.- 6 Conways Chequerboard-Armee.- 7 Werfen einer Nadel.- 8 Torricellis Trompete.- 9 Nichttransitive Effekte.- 10 Ein Verfolgungsproblem.- 11 Parrondospiele.- 12 Hyperdimensionen.- 13 Freitag, der 13.- 14 Fractran.- Die Motive.- A Das Prinzip der Einschließung und Ausschließung.- B Die binomische Umkehrformel.- C Oberfläche und Bogenlänge.- Index.