x
Math for Deep Learning

Math for Deep Learning - What You Need to Know to Understand Neural Networks

Taschenbuch, Sprache: Englisch
61,50 €
inkl. MwSt. versandkostenfrei!
Nur noch 1x vorrätig

Produktdetails  
Verlag No Starch Press
Auflage 2021
Seiten 344
Format 17,9 x 2,0 x 23,3 cm
Gewicht 635 g
Artikeltyp Englisches Buch
EAN 9781718501904
Bestell-Nr 71850190UA

Produktbeschreibung  

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.

With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning.

You ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.

In addition you ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

Inhaltsverzeichnis:

Introduction
Chapter 1: Setting the Stage
Chapter 2: Probability
Chapter 3: More Probability
Chapter 4: Statistics
Chapter 5: Linear Algebra
Chapter 6: More Linear Algebra
Chapter 7: Differential Calculus
Chapter 8: Matrix Calculus
Chapter 9: Data Flow in Neural Networks
Chapter 10: Backpropagation
Chapter 11: Gradient Descent
Appendix: Going Further

Rezension:

"An excellent resource for anyone looking to gain a solid foundation in the mathematics underlying deep learning algorithms. The book is accessible, well-organized, and provides clear explanations and practical examples of key mathematical concepts. I highly recommend it to anyone interested in this field."
Daniel Gutierrez, insideBIGDATA

"Ronald T. Kneusel has written a handy and compact guide to the mathematics of deep learning. It will be a well-worn reference for equations and algorithms for the student, scientist, and practitioner of neural networks and machine learning. Complete with equations, figures and even sample code in Python, this book is a wonderful mathematical introduction for the reader."
David S. Mazel, Senior Engineer, Regulus-Group

"What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the ne eded math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach."
Ed Scott, Ph.D., Solutions Architect & IT Enthusiast

Mehr Angebote zum Thema  

Verpasse keine Highlights & Aktionen. Jetzt zum Newsletter anmelden.

Wenn Sie unseren Newsletter abonnieren, willigen Sie damit ein, dass Ihre E-Mail Adresse gespeichert und gemäß Art. 6 Abs. 1 a) DSGVO verarbeitet wird. Einzelheiten zur Speicherung und Nutzung Ihrer Daten finden Sie unter Datenschutz und Datensicherheit. Zur Optimierung unseres Angebots werten wir in anonymisierter Form aus, wie viele Links in unserem Newsletter angeklickt werden. Diese Auswertung lässt keinen Rückschluss auf Ihre Person oder sonstige Ihrer Daten zu und wird nicht mit anderen personenbezogenen Daten oder Bestelldaten verbunden. Die Auswertung der Klickzahlen erfolgt allein zu statistischen Zwecken.
Eine Abmeldung ist jederzeit über einen Link am Ende jeden Newsletters möglich.
1 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Diese Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Die frühere Buchpreisbindung ist dadurch aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Diese Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Angaben zu Preissenkungen beziehen sich auf den ehemaligen gebundenen Preis eines mangelfreien Exemplars.

3 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen gebundenen Ladenpreis.

4 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung, wie diese vom Hersteller oder von einem Lieferanten zur Verfügung gestellt wird.

5 Diese Artikel haben leichte Beschädigungen wie angestoßenen Ecken, Kratzer oder ähnliches und können teilweise mit einem Stempel "Mängelexemplar" als solche gekennzeichnet sein. Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung, wie diese vom Hersteller oder von einem Lieferanten zur Verfügung gestellt wird.

6 Der Preisvergleich bezieht sich auf die Summe der Einzelpreise der Artikel im Paket. Bei den zum Kauf angebotenen Artikeln handelt es sich um Mängelexemplare oder die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt oder um eine ehemalige unverbindliche Preisempfehlung des Herstellers. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis. Der jeweils zutreffende Grund wird Ihnen auf der Artikelseite dargestellt.

7 Der gebundene Preis des Buches wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen gebundenen Preis.

8 Sonderausgabe in anderer Ausstattung, inhaltlich identisch. Angaben zu Preissenkungen beziehen sich auf den Vergleich Originalausgabe zu Sonderausgabe.

9 Der Preisvergleich bezieht sich auf den Originalpreis eines neuen Exemplares.

Alle Preisangaben inkl. gesetzlicher MwSt. und ggf. zzgl. Versandkosten.