Statistik verstehen, Band 1 - Deskriptive Statistik für die Bildungswissenschaften
Verlag | UTB |
Auflage | 2021 |
Seiten | 216 |
Format | 17,1 x 1,6 x 24,0 cm |
Gewicht | 422 g |
ISBN-10 | 3825255859 |
ISBN-13 | 9783825255855 |
Bestell-Nr | 82525585A |
Statistik für Einsteiger_innenDie Autor_innen stellen hier grundlegende statistische Verfahren vor. Mit diesen Verfahren können bildungswissenschaftliche Fragestellungen über Zusammenhang, Unterschied oder Veränderung auf Basis von Stichprobendaten beantwortet werden. Die statistischen Grundideen, Kennwerte und Verfahrensweisen werden kleinschrittig hergeleitet, sodass ein tiefes Verständnis für ihre Bedeutung erlangt wird. Durch Übungsaufgaben wird das erlernte Wissen angewendet und gefestigt.Selbst wenn Ihnen Mathematik nicht zufliegt, haben Sie nach der Erarbeitung dieses Buches keinen Grund mehr, Statistik zu fürchten, sondern werden Statistik als ein nützliches Werkzeug für Studium und Forschung zu schätzen wissen.
Inhaltsverzeichnis:
1 Einleitung .92 Daten und Messen112.1 Objektbereich122.2 Vom Objektbereich zum Datenbereich162.3 Messniveaus192.3.1 Nominalskala192.3.2 Ordinalskala202.3.3 Intervallskala212.3.4 Verhältnisskala232.3.5 Weitere Hinweise232.4 Die Datenmatrix263 Daten zusammenfassend darstellen: Häufigkeiten 313.1 Univariate Häufigkeitsverteilungen313.1.1 Absolute und relative Häufigkeiten313.1.2 Kumulierte Häufigkeiten 373.1.3 Häufigkeitsverteilungen bei metrischen Variablen403.1.4 Zusammengefasste (klassierte) Daten443.2 Bivariate Häufigkeitsverteilungen494 Daten zusammenfassend darstellen: Verteilungskennwerte574.1 Lagemaße .584.1.1 Nominalskalenniveau: der Modalwert 584.1.2 Ordinalskalenniveau: der Median594.1.3 Metrisches Skalenniveau: das arithmetische Mittel634.1.4 Vergleich der Maße der zentralen Tendenz .694.2 Weitere Lagemaße: die Perzentile714.2.1 Bestimmen von xp, wenn n p ganzzahlig714.2.2 Bestimmen von xp, wenn n p nicht ganzzahlig724.2.3 Weitere Hinweise zu Perzentilen744.3 Str euungsmaße 754.3.1 Die Spannweite764.3.2 Der Quartilsabstand 764.3.3 Varianz und Standardabweichung 764.4 Nutzung von Verteilungskennwerten 814.5 Grafische Darstellung der Verteilung auf Basis statistischer Kennwerte 834.5.1 Das Perzentilband 834.5.2 Der Box-Plot885 Vergleichende Analysen auf Basis von Häufigkeiten915.1 Datenstrukturen915.2 Vergleich der Häufigkeitsverteilungen bei verbundenen Messreihen 935.3 Vergleich der Häufigkeitsverteilungen bei unverbundenen Messreihen 966 Vergleichende Auswertungsstrategien auf Basis statistischer Kennwerte1056.1 Mittelwertvergleiche bei unverbundenen Messreihen1066.2 Mittelwertvergleiche bei verbundenen Messreihen1126.3 Inner-Subjekt-Faktoren und Zwischen-Subjekt-Faktoren1166.4 Kombination von zwei Zwischen-Subjekt-Faktoren1196.5 Kombination von einem Zwischen-Subjekt-Faktor und einem Inner-Subjekt-Faktor 1266.5.1 Mittelwertvergleiche im gemischten zweifaktoriellen Design 1276.5.2 Mittelwertvergleich im gemischten Design mit Messwiederhol ung1306.6 Kombination von zwei Inner-Subjekt-Faktoren1337 Zusammenhangsmaße für kategoriale Variablen1397.1 (Bei Unabhängigkeit) Erwartete Häufigkeiten1407.2 Der 2-Koeffizient1477.3 Weitere Koeffizienten auf Basis von 2 1517.3.1 Der Phi-Koeffizient1527.3.2 Cramér's V 1527.3.3 Der Kontingenzkoeffizient K1537.3.4 Der korrigierte Kontingenzkoeffizient K_ 1548 Zusammenhangsmaße für metrische Variablen 1558.1 Grafische Darstellung: Punktewolken im Streudiagramm1568.2 Der Korrelationskoeffizient1638.2.1 Der Korrelationskoeffizient nach Fechner1648.2.2 Der Korrelationskoeffizient nach Pearson1678.3 Zur Interpretation von Korrelationen1719 Einfache lineare Regression1819.1 Bestimmung der Regressionsgleichung1819.1.1 Lineare Funktionen1829.1.2 Residuen1839.1.4 Bestimmung der Regressionsparameter1889.1.5 Interpretation der Regressionsparameter1909.1.6 Zum Zusammenhang von Korrelation und Steigungsparameter1919.2 Wie gut repräsentiert die Regressionsgerade die empirischen Daten? 1929.2.1 M inimum und Maximum für SSR1939.2.2 Das Bestimmtheitsmaß R21949.2.3 Interpretation des Bestimmtheitsmaßes R21959.3 Lassen sich auch x-Werte über eine Regression vorhersagen?19710 Feierabend!20111 Literatur20212 Abbildungsverzeichnis 20413 Tabellenverzeichnis20714 Aufgabenverzeichnis20915 Index 212