Neuronale Netze stehen im Mittelpunkt, wenn es um Künstliche Intelligenz und Machine Learning geht. Sie revolutionieren Bild- und Spracherkennung, Spiele-KIs und vieles mehr. Zum Glück lassen sich die genialen Ideen dahinter einfach erklären. Um sie zu verstehen und einzusetzen, programmieren Sie verschiedene Netztypen selbst nach! Und zwar in Python, der Hauptsprache der KI-Welt. Sie werden sich dabei mit Mathematik und Programmierung befassen, brauchen aber keine konkreten Vorkenntnisse.
Aus dem Inhalt:
Die Grundidee hinter Neuronalen NetzenEin einfaches Neuronales Netz aufbauenNeuronale Netze trainierenÜberwachtes und unüberwachtes LernenEinführung in TensorFlowKompaktkurs PythonWichtige mathematische GrundlagenReinforcement LearningVerschiedene Netzarten und ihre AnwendungsbereicheBack PropagationDeep LearningWerkzeuge für Data Scientists
Dr. Roland Schwaiger ist in so manchen Bereichen der IT-Welt zuhause - Entwickler, Dozent, Forscher und Autor. In seinem Buch "Schrödinger programmiert ABAP" oder "Neuronale Netze programmieren mit Python" verbindet er technisches Know-how mit einem lockeren, humorvollen Stil, der selbst komplexe Themen verständlich und unterhaltsam macht.Seine berufliche Reise begann nach dem Studium der Informatik und Mathematik an der Bowling Green State University (Ohio, USA) und der Universität Salzburg, wo er in Mathematik/Informatik promovierte. Als Softwareentwickler bei der SAP AG in Walldorf sammelte er praktische Erfahrungen im Bereich Human Resources, bevor er sich der Wirtschaft und anwendungsbezogenen Projekten widmete.Seit Anfang 2000 unterrichtet Dr. Schwaiger an Fachhochschulen, Universitäten und für SAP. Dort bringt er Studierenden und Schulungsteilnehmern die Feinheiten der ABAP-Programmierung und Themen wie künstliche Intelligenz näher. Seine angewandte Forschung dreht sich um Künstliche Neuronale Netze, Evolutionäre Algorithmen und innovative Ansätze in der Softwareentwicklung.Als Geschäftsführer der NoR GmbH, einem Unternehmen mit Fokus auf SAP-HCM, SAP-Technologien und KI, bringt er Praxis und Forschung zusammen. Ob in Vorlesungen, Workshops oder seinem Buch - Dr. Schwaiger vermittelt nicht nur Wissen, sondern auch Begeisterung für die Welt der Informatik. Prof. Dr. Joachim Steinwendner ist Forschungsfeldleiter für Digital GeoHealth an der Fernfachhochschule Schweiz mit einer fundierten Expertise in Data Science, Maschinellem Lernen, Empfehlungssystemen und Deep Learning. Seine Forschungsarbeit umfasst die Entwicklung und Anwendung Künstlicher Intelligenz, insbesondere Neuronaler Netze, in den Domänen der Gesundheits- und Geoinformatik. Als Dozent an verschiedenen Hochschulen (unter anderem der ETH Zürich) legt er großen Wert darauf, komplexe KI-Technologien didaktisch ansprechend und verständlich zu vermitteln, um Studierende für diese Themen zu begeistern und praxisnah auf die Herausforderungen der digitalen KI-Transformation vorzubereiten.
Autorenporträt schließen