Skalierbare KI/ML-Infrastrukturen - NVIDIA-GPUs in Container-Systemen - Expertenwissen zur Evaluierung, Automatisierung und für die Praxis
Verlag | Rheinwerk Verlag |
Auflage | 2023 |
Seiten | 468 |
Format | 19,8 x 3,0 x 24,4 cm |
Gewicht | 1138 g |
ISBN-10 | 3836273934 |
ISBN-13 | 9783836273930 |
Bestell-Nr | 83627393A |
Wie Sie abseits der Hypes resiliente, hochautomatisierte und autoskalierbare Systeme für Produktiv-Workloads aufbauen, zeigt Ihnen Oliver Liebel in diesem Wegweiser. Sie erfahren, wie Sie NVIDIAs Datacenter-GPUs nahtlos in Hypervisoren und moderne Container-Infrastrukturen integrieren, sie Operator-gestützt mit Kubernetes bzw. OpenShift verwalten und daraus praxistaugliche Setups machen.
Betrachtet wird der ganze Infrastruktur-Stack: Von On-Premises-Installationen auf vSphere oder Cloud-Setups auf GCP und AWS über Plattform-Automation per IaaS/IaC sowie den GPU- und Network-Operatoren bis hin zu einem Ausblick auf AI End-to-End-Tool-Stacks.
Aus dem Inhalt:
KI/ML: Grundlagen und Use CasesInfrastruktur planen: On-Premises, Cloud oder Hybrid?Technischer Background: KI/ML mit NVIDIA-GPUsGPU-Modi: Passthrough-MIG vs. MIG-backed vGPU vs. vGPUNVIDIA-GPUs auf vSphere On-Prem implementierenNVIDIA AI EnterpriseKI/ML-Cluster mit Kubernetes und OpenShiftGPU-spezifisch e OperatorenGPU-Cluster mit OpenShiftVon CI/CD über GitOps zu MLOpsML-Pipelines & AI End-to-End
Rezension:
»Im Rahmen dieser Buchbesprechung ist es gerade einmal möglich, an der Oberfläche von Oliver Liebels Werk zu kratzen. Das liegt weniger an den rund 470 Seiten, als vielmehr am wahrlich komprimierten Inhalt, den der Autor verständlich vermittelt. Er führt Schritt für Schritt durch das Planen und Aufbauen einer eigenen ML/KI-Infrastruktur, ohne unnötige Worte zu verlieren. Auf den Punkt geschrieben, setzt er allerdings Vorkenntnisse in Sachen IT-Administration, Virtualisierung wie auch Cluster voraus.« IT Administrator 202305