Verlag | UTB |
Auflage | 2020 |
Seiten | 294 |
Format | 15,2 x 1,9 x 21,7 cm |
Gewicht | 457 g |
Reihe | UTB Uni-Taschenbücher 3674 |
ISBN-10 | 3825254879 |
ISBN-13 | 9783825254872 |
Bestell-Nr | 82525487A |
Die Mathematik ist wichtiger Bestandteil eines wirtschaftswissenschaftlichen Bachelorstudiums. Studierende werden deswegen bereits in den ersten Semestern mit Themen wie zum Beispiel Matrizen, Linearen Gleichungen und der Lagrange-Methode konfrontiert. Dieses erfolgreiche Lehrbuch stellt in der 6., überarbeiteten und erweiterten Auflage die für das Studium relevanten mathematischen Verfahren dar.Die Autorin legt dabei größten Wert auf Verständlichkeit: Jedes Kapitel nennt vorab Lernziele. Wichtige Definitionen und Sätze sind hervorgehoben, Beispiele sowie Prüfungstipps illustrieren den Stoff. Zusammenfassungen und zahlreiche Übungen mit Lösungen helfen zudem dabei, den Stoff zu vertiefen und sich optimal auf die Prüfung vorzubereiten.Das Lehrbuch richtet sich an Studierende der Betriebs- und Volkswirtschaftslehre.
Inhaltsverzeichnis:
1 Allgemeinwissen 11.1 Zahlen11.2 Zahlenangaben in Prozent41.3 Zusammenfassung62 Mengen und Abbildungen 72.1 Mengen72.2 Abbildungen92.3 Zusammenfassung163 Matrizen 193.1 Vektoren193.2 Matrizen 223.3 Spezielle Matrizen253.4 Produkt zweier Matrizen283.5 Rechenregeln für Matrizen343.6 Produktionsmatrizen363.7 Zusammenfassung424 Lineare Gleichungen 434.1 Lineare Gleichungssysteme434.2 Gaußalgorithmus 514.3 Produktionsprogramme584.4 Innerbetriebliche Leistungsverrechnung604.5 Beispiele zum Gaußalgorithmus 624.6 Zusammenfassung665 Folgen und Reihen 675.1 Folgen und ihre Eigenschaften675.2 Grenzwert von Folgen725.3 Reihen755.4 Zusammenfassung816 Funktionen einer reellen Variablen 836.1 Ökonomische Funktionen846.2 Spezielle Funktionen946.3 Eigenschaften von Funktionen1076.4 Grenzwert von Funktionen1086.5 Stetigkeit1146.6 Zusammenfassung1227 Differentiation mit einer Variablen 1257.1 Ableitungen1257.1.1 Ableitungen elementarer Funktionen1317.1.2 Ableitungsregeln1327.2 Elastizität1377.3 Mo notonie1427.4 Höhere Ableitungen1457.5 Extremstellen1487.6 Wendestellen1587.7 Sattelstellen1647.8 Zusammenfassung1668 Differentiation mit mehreren Variablen 1678.1 Partielle Ableitungen erster Ordnung1678.2 Partielle Elastizität1718.3 Partielle Ableitungen zweiter Ordnung1748.4 Linear-homogen1768.5 Zusammenfassung1769 Optimierung nichtlinearer Funktionen 1779.1 Extremstellen1779.2 Sattelstellen1869.3 Extremstellen unter Nebenbedingungen1899.3.1 Einsetz-Methode1899.3.2 Lagrange-Methode1949.4 Zusammenfassung20410 Integration 20710.1 Bestimmtes Integral20910.2 Unbestimmtes Integral21310.2.1 Integrale elementarer Funktionen 21510.2.2 Integrationsregeln21710.3 Mehrfaches Integral22010.4 Zusammenfassung22211 Übungen 22511.1 Aufgaben22511.2 Lösungen246A Anhang 273A.1 Die kostenlose Software R273Literaturverzeichnis 279Index 281