Doing Bayesian Data Analysis - A Tutorial with R, JAGS, and Stan
Verlag | Academic Press |
Auflage | 2014 |
Seiten | 776 |
Format | 19,9 x 24,3 x 4,4 cm |
Gewicht | 1950 g |
Artikeltyp | Englisches Buch |
ISBN-10 | 0124058884 |
EAN | 9780124058880 |
Bestell-Nr | 12405888EA |
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets.
The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment.
This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business.
Inhaltsverzeichnis:
1. What's in This Book (Read This First!)
PART I The Basics: Models, Probability, Bayes' Rule, and R
2. Introduction: Credibility, Models, and Parameters
3. The R Programming Language
4. What Is This Stuff Called Probability?
5. Bayes' Rule
PART II All the Fundamentals Applied to Inferring a Binomial Probability
6. Inferring a Binomial Probability via Exact Mathematical Analysis
7. Markov Chain Monte Carlo
8. JAGS
9. Hierarchical Models
10. Model Comparison and Hierarchical Modeling
11. Null Hypothesis Significance Testing
12. Bayesian Approaches to Testing a Point ("Null") Hypothesis
13. Goals, Power, and Sample Size
14. Stan
PART III The Generalized Linear Model
15. Overview of the Generalized Linear Model
16. Metric-Predicted Variable on One or Two Groups
17. Metric Predicted Variable with One Metric Predictor
18. Metric Predicted Variable with Multiple Metric Predictors
19. Metric Predicted Varia ble with One Nominal Predictor
20. Metric Predicted Variable with Multiple Nominal Predictors
21. Dichotomous Predicted Variable
22. Nominal Predicted Variable
23. Ordinal Predicted Variable
24. Count Predicted Variable
25. Tools in the Trunk